If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+4x=12
We move all terms to the left:
10x^2+4x-(12)=0
a = 10; b = 4; c = -12;
Δ = b2-4ac
Δ = 42-4·10·(-12)
Δ = 496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{496}=\sqrt{16*31}=\sqrt{16}*\sqrt{31}=4\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{31}}{2*10}=\frac{-4-4\sqrt{31}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{31}}{2*10}=\frac{-4+4\sqrt{31}}{20} $
| 6x+4=3x2+4 | | 12-6k=4(-8+4k | | 6-5|-7x-8|=11 | | X^2+6x-25=-9 | | 28+24=35b+17 | | -v+12v=6 | | 10+4g-g=37 | | 8.9=40.90x | | 6n-6+n=-6 | | 14x+126=154 | | 10+k-1/3k=0 | | 5v=13v+14 | | -2x3=3 | | −43={x}{5}-475x | | 2/5k+3/10=1/2k-4/5 | | 4x2=50 | | 8d=-8+10d | | a+a+10+a-37=180 | | a+(a+10)+a-37=180 | | √49-3x=2 | | 4x/(x-2)+3/x=(-6)/(x^2-2x) | | 3p+4=-12 | | 5+6h=6+2 | | -17+20=-3(x+6) | | 0=2(x^2+3x-3) | | x-83=221 | | 2(5x+6)=-39+41 | | 5r-8=2r | | 1/42(x-1)+6=x | | 3^g=9^5 | | 2(2x+1)÷3=6 | | 3+y²=11y |